
UNIT –IV (Servlets)

Web Application

 A web-application is an application program that is usually stored on a

remote server, and users can access it through the use of Software known

as web-browser.

 A web application are generally coded using the languages supported by

almost every web-browsers such as HTML, JavaScript because these are the

languages that rely on the web browsers to render the program executable.

Flow of the Web Application

Some of the web applications are entirely static due to which they not required any

processing on the server at all while, on the other hand, some web applications are

dynamic and require server-side processing.

To operate a web-application, we usually required a web server (or we can

say some space on the web-server for our programs/application's code) to manage

the clients' upcoming requests and required an application server.

The application server performs the task that requested by the clients, which

also may need a database to store the information sometimes.

Application server technologies range from ASP.NET, ASP, and ColdFusion to

PHP and JSP.

https://www.javatpoint.com/asp-net-tutorial

Web Server

A web server is software and hardware that uses HTTP (Hypertext Transfer

Protocol) and other protocols to respond to client requests made over the World

Wide Web.

The main job of a web server is to display website content through storing,

processing and delivering webpages to users.

Application Server

An application server enables a server to generate a dynamic, customized response

to a client request.

The application server collaborates with the web server to return a dynamic,

customized response to a client request.

MVC Architecture

• MVC separates the business logic and presentation layer from each other. It

was traditionally used for desktop graphical user interfaces (GUIs).

• Nowadays, MVC architecture in web technology has become popular for

designing web applications as well as mobile apps.

• The MVC is an architectural pattern that separates an application into

1) Model, 2) View and 3) Controller

– Model: It includes all the data and its related logic

– View: Present data to the user or handles user interaction

– Controller: An interface between Model and View components

– MVC architecture was first discussed in 1979 by T Reenskaug

• Some popular MVC frameworks are Rails, Zend Framework,

CodeIgniter, Laravel, Fuel PHP, etc.

Examples of MVC architecture in Real world :

View= You Waiter= Controller Cook= Model Refrigerator= Data

View= User interface : (Gear lever, panels, steering wheel, brake, etc.)

Controller- Mechanism (Engine) Model- Storage (Petrol or Diesel tank)

Describing Servlets

• Servlet is a Java Technology for server-side programming.

• It is a Java module that runs inside a Java-enabled web server and services

the requests obtained from the web server.

• Servlets are the Java programs that run on the Java-enabled web server or

application server.

• They are used to handle the request obtained from the webserver, process the

request, produce the response, then send a response back to the webserver.

• Working with Servlets is an important step in the process of Application

development and delivery through the Internet.

• A Web application is sometimes called a Web app, Thus, it is an application

that is accessed using a Web browser over the network such as the Internet

or an Intranet.

Working With Servlets

Working with Servlets is an important step in the process of Application

development and delivery through the Internet.

• Servlets are not tied to a specific client-server protocol, but are most

commonly used with HTTP.

• Execution of servlet consists of 4 steps:

– The client sends request to server

– The server alerts appropriate servlet

– The servlet process the request and generates the output(if any), and

sends back to the Webserver

– The Webserver sends back response to the client

Advantages Over Applets :

• Applets are downloaded from the server and executes in clients browser

– Uses JRE

– Problems with browsers (not compatible)

• Servlets run on the server machine and usually generates HTML code.

– So, even older version of browser can easily display

CGI :

Why Servlet?

Servlets provide a component-based, platform-independent method for building

Webbased applications. Servlets have access to the entire family of Java APIs,

including the JDBC API to access enterprise databases.

Using Servlets, you can collect input from users through web page forms, present

records from a database or another source, and create web pages dynamically. Java

Servlets often serve the same purpose as programs implemented using the

Common Gateway Interface (CGI).

Differences between Servlets and CGI :

Servlet CGI(Common Gateway Interface)

Servlets are portable and efficient. CGI is not portable

In Servlets, sharing data is possible. In CGI, sharing data is not possible.

Servlets can directly communicate

with the webserver.

CGI applications cannot directly

communicate with the webserver(

Some more interface is required).

Servlets are less expensive than CGI. CGI is more expensive than Servlets.

Servlets can handle the cookies. CGI cannot handle the cookies.

Servlet Alternatives :

• CGI

• Proprietary API’s

– NETSCAPE NSAPI’s

– Microsoft ISAPI’s

– Orelly’s WSAPI’s

• These are not free, community is less, memory leak

• ASP

• Server Side JS

Advantages of Servlets :

• Better performance: because it creates a thread for each request, not

process.

• Portability: because it uses Java language.

• Robust: JVM manages Servlets, so we don't need to worry about the

memory leak, garbage collection, etc.

• Secure: because it uses java language (Java Security Manager component).

Applications of Servlet :

 Read the explicit data sent by the clients (browsers). This includes an HTML

form on a Web page or it could also come from an applet or a custom HTTP

client program.

 Read the implicit HTTP request data sent by the clients (browsers). This

includes cookies, media types and compression schemes the browser

understands, and so forth.

 Process the data and generate the results. This process may require talking to

a database, executing an RMI or CORBA call, invoking a Web service, or

computing the response directly.

 Send the explicit data (i.e., the document) to the clients (browsers). This

document can be sent in a variety of formats, including text (HTML or

XML), binary (GIF images), Excel, etc.

 Send the implicit HTTP response to the clients (browsers). This includes

telling the browsers or other clients what type of document is being returned

(e.g., HTML), setting cookies and caching parameters, and other such tasks.

Apache Tomcat Web Server :

Exploring Features of Servlets :

• Servlet – A Request – Response Model

• Servlets are based on the programming model that accepts requests and

generates responses accordingly.

• Developer can extends GenericServlet or HttpServlet class to create servlet.

– The service() method in GenericServlet class, doXXX() methods in

HttpServlet classes are responsible for handling requests and responses.

public void service(ServletRequest req, ServletResponse res) throws

ServletException, IOException { }

Stream related classes for servlet :

ServletInputStream i=req.getInputStream();

ServletOutputStream i=req.getOutputStream();

Exploring Features of Servlets :

• Servlet and Environment State

– Servlets are similar to other java objects and runs within the server

environment

– ServletConfig – is used to obtain configuration information from

web.xml file (initialization paramerts of Only one servlet can be

stored in servletconfig object)

– ServletContext – is used to obtain configuration information from

web.xml file – parameter information related to entire Web

Appliation (servlets, JSP, HTML…)

<web-app>

<init-param>

<param-name>Country</param-name>

<param-value>India</param-value>

</init-param>

<init-param>

<param-name>Age</param-name> <param-value>24</param-

value>

</init-param> </web-app>

To retrieve parameters through servlet we use the following methods :

getServletConfig().getInitParameter("Country");

getServletConfig().getInitParameter("Age");

Exploring Features of Servlets :

• Usage Modes

– Servlets can be used in various modes:

• Servlets can be chained together into filter chains (recording all

incoming requests, logs the IP addresses of the computers from

which the requests originate, conversion, data compression,

encryption and decryption, input validation etc.) by the servers.

• Servlets can support protocols such as HTTP.

• Servlets are replacement of CGI.

• Servlets are used to generate dynamic HTML content

• Possible sources of Servlets

– When a Client request for a Servlet, the server maps the request of

the client and loads the servlet.

– The Server administrator can specify the mapping of client request to

server in the following ways:

• Mapping of client request to particular servlet.

• Mapping client requests to the servlets found in the

administrative directory(shared by multiple servers)

• Invokes other servlets

• Primary Servlet Methods:

– init()

– service()

– destroy()

• Security Features

– Servlets access information about their client using SSL(Secure

Socket Layer)

– Managed by Java Server Security Manager

• Activities of servlets are monitored by the manager (also called

as signed servlets).

• Activities of native code extensions in case of (unsigned

servlets) can not be monitored.

• HTTP – Specific Servlets

– Servlets uses HTTP protocol

• Servlets which are being used with the HTTP protocol may

support any HTTP method, including GET, POST, HEAD, and

more.

• They can get access to parameters which were passed through

standard HTML forms, including the HTTP method and the

URL which identifies the destination of the request:

» String method = request.getMethod (); // e.g. POST

» String uri = request.getRequestURI ();

» String name = request.getParameter ("name");

» String phone = request.getParameter ("phone");

• Performance Features

– In CGI, for every request one process will be created

– But in Servlets, one thread will be created

– In Fast- CGI, child process wont be terminated after request

completion but wait for another incoming connection.

• 3-tier Applications

– Using Java Servlet we can opt for 3- tier architecture.

• The first tier – Web browser

• Second tier – Servlets – For Business logic

• Third – Database connectivity

IIOP – Internet Interop – ORB(Object Request

• Web Publishing System

– Many organizations have large collections of data to manage and

publish.

– Servlets easily supports for pushing, pulling data and manages data.

 Ex. Weather Forecast]

Exploring Servlet API

• The javax.servlet and javax.servlet.http packages provide interfaces and

classes for writing servlets.

• All servlets must implement the Servlet interface, which defines life-cycle

methods.

– When implementing a generic service, you can use or extend the

GenericServlet class provided with the Java Servlet API.

– TheHttpServlet class which extends from GenericServlet , provides

methods, such as doGet and doPost, for handling HTTP-specific

services.

–

javax.servlet package

• This package provides the number of interfaces and classes to support

Generic servlet which is protocol independent.

 Interfaces Classes

Classes available in javax.servlet package:

GenericServlet To define a generic and

protocol-independent servlet.

ServletInputStream This class provides an input

stream to read binary data from a

client request.

ServletOutputStream This class provides an output

stream for sending binary data to

the client.

ServletException Problem with user request or

problem to send response

UnavailableException Requested resource is not

available

Interfaces available in javax.servlet package:

Interface Name Description

Servlet This is the main interface that defines the methods in which

all the servlets must implement.

To implement this interface, write a generic servlet that

extends javax.servlet.GenericServlet or an HTTP servlet that

extends javax.servlet.http.HttpServlet.

ServletConfig It defines an object created by a servlet container at the time

of servlet instantiation and to pass information to the servlet

during initialization.

Filter To perform filtering tasks on either the request to a resource,

or on the response from a resource, or both.

RequestDispatcher It defines an object to dispatch the request and response to

any other resource, means it receives requests from the

client and sends them to a servlet/HTML file/JSP file on the

server.

ServletRequest It defines an object that is created by servlet container to

pass client request information to a servlet.

ServletResponse It defines an object created by servlet container to assist a

servlet in sending a response to the client.

Methods in Servlet Interface

• Declares life cycle methods for a servlet

– public void init(ServletConfig config)

– public void service(ServletRequest req,ServletResponse res)

– public void destroy()

– public ServletConfig getServletConfig()

– public String getServletInfo()

ServletContext It defines a set of methods that a servlet uses to

communicate with its servlet container. The information

related to the web application available in web.xml file is

stored in ServletContext object created by container.

Servlet Config and Servlet context in Detail :

The Servlet Container

Servlet container, also known as Servlet engine is an integrated set of objects

that provide a run time environment for Java Servlet components.

In simple words, it is a system that manages Java Servlet components on top of

the Web server to handle the Web client requests.

ServletConfig:

Signature: public interface ServletConfig

ServletConfig is implemented by the servlet container to initialize a single servlet

using init(). That is, you can pass initialization parameters to the servlet using the

web.xml deployment descriptor. For understanding, this is similar to a constructor

in a java class.

Example code:

<servlet>

<servlet-name>ServletConfigTest</servlet-name>

<servlet-class>com.javapapers.ServletConfigTest</servlet-class>

<init-param>

<param-name>sum</param-name>

<param-value>14 </param-value>

</init-param>

</servlet>

ServletContext:

Signature: public interface ServletContext

ServletContext is implemented by the servlet container for all servlet to

communicate with its servlet container, for example, to get the MIME type of a

file, to get dispatch requests, or to write to a log file. That is to get detail about its

execution environment. It is applicable only within a single Java Virtual Machine.

If a web application is distributed between multiple JVM this will not work. For

understanding, this is like a application global variable mechanism for a single web

application deployed in only one JVM.

The ServletContext object is contained within the ServletConfig object. That is, the

ServletContext can be accessed using the ServletConfig object within a servlet.

You can specify param-value pairs for ServletContext object in <context-param>

tags in web.xml file.

Example code:

<web-app>

 <context-param>

<param-name>globalVariable</param-name>

<param-value>gv </param-value>

</context-param>

<web-app>

Sample code for web.xml to identify servletconfig using init-param tag :

<web-app>

<servlet>

 <servlet-name>redteam</servlet-name>
 <servlet-class>mysite.server.TeamServlet</servlet-class>

 <init-param>

 <param-name>teamColor</param-name>
 <param-value>red</param-value>

 </init-param>

 <init-param>
 <param-name>bgColor</param-name>

 <param-value>#CC0000</param-value>
 </init-param>

 </servlet>

 <servlet>

 <servlet-name>blueteam</servlet-name>

 <servlet-class>mysite.server.TeamServlet</servlet-class>
 <init-param>

 <param-name>teamColor</param-name>

 <param-value>blue</param-value>
 </init-param>

 <init-param>

 <param-name>bgColor</param-name>
 <param-value>#0000CC</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>redteam</servlet-name>
 <url-pattern>/red/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>blueteam</servlet-name>

 <url-pattern>/blue/*</url-pattern>
 </servlet-mapping>

</web-app>

Differences between Servelt config and servlet context

ServletConfig

1.ServletConfig available in javax.servlet.*; package

2.ServletConfig object is one per servlet class

3.destroyed once the servlet execution is completed.

4.We should give request explicitly, in order to create ServletConfig object for the

first time

5.Object of ServletConfig will be created during initialization process of the servlet

6.This Config object is public to a particular servlet only

ServletContext

1.ServletContext available in javax.servlet.*; package

2.ServletContext object is global to entire web application

3.Object of ServletContext will be created at the time of web application

deployment

4.Scope: As long as web application is executing, ServletContext object will be

available, and 5.it will be destroyed once the application is removed from the

server.

6.ServletContext object will be available even before giving the first request

Deployment Descriptor :

web. xml file is also called Deployment descriptor defines mappings

between URL paths and the servlets that handle requests with those paths. The web

server uses this configuration to identify the servlet to handle a given request and

call the class method that corresponds to the request method.

 Servlet Mapping (Example web.xml)

<servlet>

 <servlet-name>watermelon</servlet-name>

 <servlet-class>myservlets.watermelon</servlet-class>

</servlet>

<servlet>

 <servlet-name>garden</servlet-name>

 <servlet-class>myservlets.garden</servlet-class>

</servlet>

<servlet>

 <servlet-name>list</servlet-name>

 <servlet-class>myservlets.list</servlet-class>

</servlet>

<servlet>

 <servlet-name>kiwi</servlet-name>

 <servlet-class>myservlets.kiwi</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>watermelon</servlet-name>

 <url-pattern>/fruit/summer/*</url-pattern>

</servlet-mapping>

<servlet-mapping>

 <servlet-name>garden</servlet-name>

 <url-pattern>/seeds/*</url-pattern>

</servlet-mapping>

<servlet-mapping>

 <servlet-name>kiwi</servlet-name>

 <url-pattern>*.abc</url-pattern>

</servlet-mapping>

<servlet-mapping>

 <servlet-name>list</servlet-name>

 <url-pattern>/seedlist</url-pattern>

</servlet-mapping>

url-patterns and Servlet Invocation using above web.xml

URL Servlet
Invoked

http://host:port/mywebapp/fruit/summer/index.html watermelon

http://host:port/mywebapp/fruit/summer/index.abc watermelon

http://host:port/mywebapp/seedlist list

http://host:port/mywebapp/seedlist/index.html The default servlet, if configured, or an HTTP
404 File Not Found error message.

If the mapping for the list servlet had

been /seedlist*, the list servlet would be

invoked.

Sample code for Servlet :

HelloWorldServlet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloWorldServlet extends HttpServlet

{
public void service(HttpServletRequest req,

 HttpServletResponse res)
 throws IOException

 {

 // Must set the content type first
 res.setContentType("text/html");

 // Now obtain a PrintWriter to insert HTML into

 PrintWriter out = res.getWriter();

 out.println("<html><head><title>" +

 "Hello World!</title></head>");

 out.println("<body><h1>Hello World!</h1></body></html>");

http://host:port/mywebapp/seedlist/pear.abc kiwi

If the mapping for the list servlet had

been /seedlist*, the list servlet would be

invoked.

http://host:port/mywebapp/seeds garden

http://host:port/mywebapp/seeds/index.html garden

http://host:port/mywebapp/index.abc kiwi

 }

}

Methods in ServletConfig Interface

• Allows servlets to get initialization parameters

– String getInitParameter(String name)

– Enumeration getInitParameterNames()

– ServletContext getServletContext()

– String getServletClass()

Methods in ServletRequest Interface

• Used to read data from a client request

– String getParameter(String name)

– String[] getParameterValues(String name)

– Enumeration getParameterNames()

Methods in ServletResponse Interface

• Used to write data to a client response.

– void setContentType(String type)

– ServletOutputStream getOutputStream()

– PrintWriter getWriter()

Methods in RequestDispatcher interface

• public void forward(ServletRequest request,ServletResponse
response)throws ServletException,java.io.IOException:

– Forwards a request from a servlet to another resource (servlet, JSP

file, or HTML file) on the server.

• public void include(ServletRequest request,ServletResponse

response)throws ServletException,java.io.IOException:

– Includes the content of a resource (servlet, JSP page, or HTML file) in

the response.

Use of forward() :

As you see in the above figure, response of second servlet is sent to the client.

Response of the first servlet is not displayed to the user

Use of include() :

As you can see in the above figure, response of second servlet is included in the

response of the first servlet that is being sent to the client.

Methods in GenericServlet

• Implements the Servlet and ServletConfig

 interfaces

– void init(ServletConfig config)

– void service(ServletRequest req, ServletResponse res)

– void destroy()

– String getInitParameter(String name)

– Enumeration getInitParameterNames()

– ServletContext getServletContext()

– String getServletName()

– String getServletInfo()

Methods in ServletInputStream and ServletOutputStream :

• ServletInputStream – provides an input stream for reading requests from a

client

– public int readLine(byte b[], int offset, int length)

• ServletOutputStream –provides an output stream for writing responses to

a client

Various methods of ServletOutputStream :

– public void print(boolean) public void println(boolean)

– public void print(char) public void println(char)

– public void print(double) public void println(double)

– public void print(float) public void println(float)

– public void print(int) public void println(int)

– public void print(long) public void println(long)

– public void print(String) public void println(String)

javax.servlet.http :

• This package provides the number of interfaces and classes to support

HTTP servlet which is HTTP protocol dependent.

• The two most common HTTP request types are get and post.

• A get request gets (or retrieves) information from a server. Common uses of

get requests are to retrieve an HTML document or an image.

• A post request posts (or sends) data to a server. Common uses of post

requests are to send information to a server—such as authentication

information, data from a form, information that the server uses to search the

Internet or query to a database, etc.

• Class HttpServlet defines methods doGet and doPost to respond to get and

post requests from a client, respectively.

• These methods are called by the service method, which is called when a

request arrives at the server.

• Method service() first determines the request type, then calls the

appropriate method for handling such a request.

Diagram showing various methods of HttpServlet :

Interfaces and Classes

Methods in HttpServlet

 void doGet(HttpServletRequest req, HttpServletResponse resp)

 void doPost(HttpServletRequest req, HttpServletResponse resp)

 void doPut(HttpServletRequest req, HttpServletResponse resp)

 void doDelete(HttpServletRequest req, HttpServletResponse resp

 void doOptions(HttpServletRequest req, HttpServletResponse resp)

 void doTrace(HttpServletRequest req, HttpServletResponse resp)

 void doHead(HttpServletRequest req, HttpServletResponse resp)

 void service(HttpServletRequest req, HttpServletResponse resp)

HTTP Methods :

• GET

• POST – Create or adds the resource at server side

• HEAD – Server Sends only header, without Response body

• PUT – Update/replace the resource at Server Side

• DELETE

• TRACE – To trace the route/debugging

• OPTIONS – for Communication Purpose – What are the options available

such as GET,POST,HEAD, PUT, DELETE…..

Differences between GET and POST :

 GET POST

Data is visible to everyone in the URL Data is not displayed in the URL. Data is set

as part of message header.

GET is less secure compared to POST

because data is appended as part of the

URL

POST is a little safer than GET because

added with header part.

Only ASCII characters allowed No restrictions. Binary data is also allowed

When sending data, the GET method

adds the data to the URL; and the

length of a URL is limited (maximum

URL length is 2048 characters)

No restrictions

Can be bookmarked Cannot be bookmarked

Can be cached Not cached

Harmless – read Operations

Maybe – Update, Modify operations

Methods in HttpServletResponse

o void addHeader(String name, String value)

o boolean containsHeader(String name)

o void setHeader(String name, String value)

o void setStatus(int sc)

o void sendError(int sc)

o void sendError(int sc, String msg)

o void sendRedirect(String location)

o void addCookie(Cookie cookie)

o String encodeURL(String url)

o String encodeRedirectURL(String url)

o setContentType(String)

Methods in HttpServletRequest

o String getContextPath()

o String getHeader(String name)

o Enumeration getHeaderNames()

o String getMethod()

o String getQueryString()

o String getRemoteUser()

o String getRequestURI()

o StringBuffer getRequestURL()

o String getServletPath()

o Cookie[] getCookies()

o HttpSession getSession()

o HttpSession getSession(boolean create)

o String getRequestedSessionId()

o boolean isRequestedSessionIdFromCookie()

o boolean isRequestedSessionIdFromUrl()

o boolean isRequestedSessionIdFromURL()

o boolean isRequestedSessionIdValid()

HttpServletRequest Interface

–The role of form Data

• GET – Appended as part of the URL

• POST – As part of the Header

–Form data and parameters

• String getParameter(String name)

• String[] getParameterValues(String name)

• Enumeration getParameterNames()

Life Cycle of a Servlet :

• Servlet life cycle steps:

– Load Servlet Class.

– Create Servlet instance.

– Call init() method.

– Call service() method.

– Call destoy() method.

1. Load Servlet Class:

Web container loads the servlet when the first request is received.

This step is executed only once at the time of first request.

2. Create Servlet instance:

• After loading the servlet class web container creates the servlet instance.

• Only one instance is created for a servlet and all concurrent requests

are executed on the same servlet instance.

3. Call init() method:

• After creating the servlet instance web container calls the servlet’s init

method.

• This method is used to initialize the servlet before processing first request.

• It is called only once by the web container.

 Prototype for init() Method :

– public void init(ServletConfig config)throws ServletException

4. Call service() method:

– After initialization process web container calls service method.

– Service method is called for every request.

– For every request servlet creates a separate thread.

 Prototype for service() method :

 public void service(ServletRequest req,ServletResponse res) throws

 ServletException, IOException

5. Call destoy() method:

– This method is called by web container before removing the servlet

instance.

– Destroy method asks servlet to releases all the resources associated

with it.

– It is called only once by the web container when all threads of

the servlet have exited or in a timeout case.

Prototype for destroy() Method : public void destroy()

Other Methods:

– The javax.servlet.Servlet interface provides the following methods to inspect

the properties of a servlet at run time.

– ServletConfig getServletConfig();

Returns a ServletConfig object, which contains initial parameters, and some

other additional information.

– String getServletInfo();

Returns a string object containing info about servlet such as version, author and

so on.

Simple Example

Headers :

• HTTP headers are sent by client to the server about the

• software, language and other information the client is using

• HTTP request header can be accessed by server using various methods:

– getHeader(String) – Returns the specified header value

– getHeaders(java.lang.String name)Returns all the values of the

specified request header as an Enumeration of String objects.

(Servers add multiple Cookies)

– getHeaderNames() – Returns all the headers as enemeration

– File Uploads

– Two Primary MIME types

– application/x-www-form-urlencoded – getParameter()

– multipart/form-data – user has decide –by using

» getInputStream()

» getReader()

HTTPServletResponse Interface:

• HTTPServletResponse object helps

– To provide response by obtaining stream

– To specify the content type

– To add the header

– To redirect the HTTP request to another URI

• To send information to the client, we are using the functionality of

HTTPServletResponse object by obtaining output stream with either

getWriter() or getOutputStream() methods.

• Use only one method to obtain output stream, otherwise exception will

come,

• PrintWrite pw=response.getWriter()

• pw.print() ,pw.println() pw.write()

Response Header

• HttpServletResponse object is used to manipulate the HTTP headers of a

response.

• This information is used to inform the client about the information about

the content such as MIME type, language, protocol version.

• HttpServletResponse object includes the following methods to manipulate

HTTP response headers:

– addHeader(String name, String value)

– containsHeader(String named) – Returns a boolean value that

indicates whether named header is already set or not.

– setHeader(String name, String value) – sets the name and value as

header. The previous value is overwritten.

– addDateHeader(String name, Date) – adds a response header having

name and Date values

– setDateHeader(String name, Date) – set and overwritten the date

value.

– addIntHeader(String,int) – ads an integer value

Difference between forward() and sendRedirect() method :

Header Field Description

Age +ve number, seconds, represents estimated time

since last response

Content-length Length of the content which is sent to client

Content-type MIME Type

Date Represents date and time

Location Specifies the location of new resource –

sendRedirect()

Retry-after Server is busy, retry after some time later

Server Provides description about the server

Refresh Value in seconds

Response Redirection

• The sendRedirect() method

of HttpServletResponse interface can be used to redirect response to another

resource, it may be servlet, jsp or html file.

• It accepts relative as well as absolute URL.

• It works at client side because it uses the URL bar of the browser to make

another request.

public void sendRedirect(String URL)throws IOExcep tion

Ex: response.sendRedirect(“www.pvpsit.ac.in");

Difference between forward() and sendRedirect() method :

forward() method sendRedirect() method

The forward() method works at server

side.

The sendRedirect() method works at

client side.

It sends the same request and response

objects to another servlet.

It always sends a new request.

It can work within the server only. It can be used within and outside the

server.

Example:

request.getRequestDispacher("servlet2")

.forward(request,response);

Example:

response.sendRedirect("servlet2")

Auto-Refresh/Wait Pages :

• The other useful response header is to send a wait page or a page that

• automatically refreshes to a new page after a specified amount of time is

elapsed.

– Wait:

• response.setHeader(“Refresh”,10);

http://www.pvpsit.ac.in/

– 10 – value(10) in seconds

– Refresh

• response.setHeader(“refresh”, “10;URL=“pvpsit.ac.in”);

Session Tracking :

• Session simply means a particular interval of time.

• Session Tracking is a way to maintain state (data) of an user. It is also

known as session management in servlet.

• Http protocol is a stateless so we need to maintain state using session

tracking techniques.

• Each time user requests to the server, server treats the request as the new

request. So we need to maintain the state of an user to recognize to

articular user.

Session Tracking Techniques:

• There are four techniques used in Session tracking:

– Cookies

– Hidden Form Field

– URL Rewriting

– HttpSession

Cookies :

A cookie is a small piece of information that is persisted between the

multiple client requests

How Cookie works:

• By default, each request is considered as a new request.

• In cookies technique, we add cookie with response from the servlet.

• So cookie is stored in the cache of the browser.

• After that if request is sent by the user, cookie is added with request by

default.

• Thus, we recognize the user as the old user.

Types of Cookie :

• There are 2 types of cookies in servlets.

– Non-persistent cookie

• It is valid for single session only. It is removed each time

when user closes the browser.

– Persistent cookie

• It is valid for multiple session . It is not removed each time

when user closes the browser. It is removed only if user

logout or signout.

• Ex: gmail uses persistent cookie for login

• Advantage of Cookies

– Simplest technique of maintaining the state.

– Cookies are maintained at client side.

• Disadvantage of Cookies

– It will not work if cookie is disabled from the browser.

– Only textual information can be set in Cookie object.

Cookie Class:

• javax.servlet.http.Cookie class provides the functionality of using cookies.

 It provides a lot of useful methods for cookies.

Constructor Description

Cookie() constructs a cookie.

Cookie(String name,String value) Constructs a cookie with a specified name

and value.

Useful Methods of Cookie class:

Method Description

public void setMaxAge(int expiry) Sets the maximum age of the

cookie in seconds.

public String getName() Returns the name of the cookie. The name cannot be changed after creation.

public String getValue() Returns the value of the cookie.

public void setName(String name) changes the name of the cookie.

public void setValue(String value) changes the value of the cookie.

Other methods required for using Cookies :

public void addCookie(Cookie ck): method of HttpServletResponse

interface is used to add cookie in response object.

public Cookie[] getCookies(): method of HttpServletRequest interface is

 used to return all the cookies from the browser.

• How to create Cookie?

– Cookie ck=new Cookie(“admin",“pvpsit”);

– response.addCookie(ck);

How to get Cookies?

Cookie ck[]=request.getCookies();

for(int i=0;i<ck.length;i++)

{

 out.println(ck[i].getName()+" "+ck[i].getValue())

}

Hidden Form Field :

• In case of Hidden Form Field a hidden (invisible)

textfield is used for maintaining the state of an user.

• In such case, we store the information in the hidden field and get it from

another servlet.

• Ex:

– <input type="hidden" name="uname" value=“PVPSIT">

Here, uname is the hidden field name and PVPSIT is the hidden field value.

URL Rewriting

URL Rewriting
• In URL rewriting, we append a token or identifier to

the URL of the next Servlet or the next resource.

• Token or identifier - Parameter name/value pairs using
the following format:

url?name1=value1&name2=value2&??

• A name and a value is separated using an equal = sign,
a parameter name/value pair is separated from
another parameter using the ampersand(&).

• When the user clicks the hyperlink, the parameter
name/value pairs will be passed to the server.

• From a Servlet, we can use getParameter() method to
obtain a parameter value.

• Advantage of URL Rewriting

– It will always work whether cookie is disabled or not (browser

independent).

– Extra form submission is not required on each pages.

• Disadvantage of URL Rewriting

– It will work only with links.

– It can send Only textual information.

HTTP Session Interface

• Web container creates a session id for each user.

• The container uses this id to identify the particular user.

• An object of HttpSession can be used to perform two tasks:
– bind objects

• setAttribute(name,value)

– view and manipulate information about a session, such as the session
identifier, creation time, and last accessed time.

How to get the HttpSession object ?:

• The HttpServletRequest interface provides two methods to get the object

of HttpSession:

– public HttpSession getSession():Returns the current session

associated with this request, or if the request does not have a

session, creates one.

– public HttpSession getSession(boolean create):Returns the current

HttpSession associated with this request or, if there is no current

session and create is true, returns a new session. If is false it don’t

create new session.

Commonly used methods of HttpSession interface :

• public String getId():Returns a string containing the unique identifier

value.

•

• public long getCreationTime():Returns the time when this session was

created, measured in milliseconds since midnight January 1, 1970 GMT.

• public void invalidate():Invalidates this session then unbinds any objects

bound to it. (clears the session)

HTTPServletResponse Interface :

• HTTPServletResponse object helps

– To provide response by obtaining stream

– To specify the content type

– To add the header

– To redirect the HTTP request to another URI

• To send information to the client, we are using the functionality of

HTTPServletResponse object by obtaining output stream with either

getWriter() or getOutputStream() methods.

• Use only one method to obtain output stream, otherwise exception will

come,

Servlet Config and Servlet context in Detail :

The Servlet Container

Servlet container, also known as Servlet engine is an integrated set of objects

that provide a run time environment for Java Servlet components.

In simple words, it is a system that manages Java Servlet components on top of

the Web server to handle the Web client requests.

ServletConfig:

Signature: public interface ServletConfig

ServletConfig is implemented by the servlet container to initialize a single servlet

using init(). That is, you can pass initialization parameters to the servlet using the

web.xml deployment descriptor. For understanding, this is similar to a constructor

in a java class.

Example code:

<servlet>

<servlet-name>ServletConfigTest</servlet-name>

<servlet-class>com.javapapers.ServletConfigTest</servlet-class>

<init-param>

<param-name>sum</param-name>

<param-value>14 </param-value>

</init-param>

</servlet>

ServletContext:

Signature: public interface ServletContext

ServletContext is implemented by the servlet container for all servlet to

communicate with its servlet container, for example, to get the MIME type of a

file, to get dispatch requests, or to write to a log file. That is to get detail about its

execution environment. It is applicable only within a single Java Virtual Machine.

If a web application is distributed between multiple JVM this will not work. For

understanding, this is like a application global variable mechanism for a single web

application deployed in only one JVM.

The ServletContext object is contained within the ServletConfig object. That is, the

ServletContext can be accessed using the ServletConfig object within a servlet.

You can specify param-value pairs for ServletContext object in <context-param>

tags in web.xml file.

Example code:

<web-app>

 <context-param>

<param-name>globalVariable</param-name>

<param-value>gv </param-value>

</context-param>

<web-app>

Differences between Servelt config and servlet context

ServletConfig

1.ServletConfig available in javax.servlet.*; package

2.ServletConfig object is one per servlet class

3.destroyed once the servlet execution is completed.

4.We should give request explicitly, in order to create ServletConfig object for the

first time

5.Object of ServletConfig will be created during initialization process of the servlet

6.This Config object is public to a particular servlet only

ServletContext

1.ServletContext available in javax.servlet.*; package

2.ServletContext object is global to entire web application

3.Object of ServletContext will be created at the time of web application

deployment

4.Scope: As long as web application is executing, ServletContext object will be

available, and 5.it will be destroyed once the application is removed from the

server.

6.ServletContext object will be available even before giving the first request

Deployment Descriptor :

web. xml file is also called Deployment descriptor defines mappings
between URL paths and the servlets that handle requests with those

paths. The web server uses this configuration to identify the servlet to
handle a given request and call the class method that corresponds to the

request method.

 Servlet Mapping (Example web.xml)

<servlet>

 <servlet-name>watermelon</servlet-name>

 <servlet-class>myservlets.watermelon</servlet-class>

</servlet>

<servlet>

 <servlet-name>garden</servlet-name>

 <servlet-class>myservlets.garden</servlet-class>

</servlet>

<servlet>

 <servlet-name>list</servlet-name>

 <servlet-class>myservlets.list</servlet-class>

</servlet>

<servlet>

 <servlet-name>kiwi</servlet-name>

 <servlet-class>myservlets.kiwi</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>watermelon</servlet-name>

 <url-pattern>/fruit/summer/*</url-pattern>

</servlet-mapping>

<servlet-mapping>

 <servlet-name>garden</servlet-name>

 <url-pattern>/seeds/*</url-pattern>

</servlet-mapping>

<servlet-mapping>

 <servlet-name>list</servlet-name>

 <url-pattern>/seedlist</url-pattern>

</servlet-mapping>

<servlet-mapping>

 <servlet-name>kiwi</servlet-name>

 <url-pattern>*.abc</url-pattern>

</servlet-mapping>

Table 4-1 url-patterns and Servlet Invocation

URL Servlet

Invoked

http://host:port/mywebapp/fruit/summer/index.html watermelon

http://host:port/mywebapp/fruit/summer/index.abc watermelon

http://host:port/mywebapp/seedlist list

http://host:port/mywebapp/seedlist/index.html The default servlet, if configured, or an HTTP
404 File Not Found error message.

If the mapping for the list servlet had

been /seedlist*, the list servlet would be

invoked.

http://host:port/mywebapp/seedlist/pear.abc kiwi

If the mapping for the list servlet had

Sample code for web.xml :

<web-app>

<servlet>
 <servlet-name>redteam</servlet-name>

 <servlet-class>mysite.server.TeamServlet</servlet-class>

 <init-param>
 <param-name>teamColor</param-name>

 <param-value>red</param-value>

 </init-param>
 <init-param>

 <param-name>bgColor</param-name>

 <param-value>#CC0000</param-value>
 </init-param>

 </servlet>

 <servlet>

 <servlet-name>blueteam</servlet-name>

 <servlet-class>mysite.server.TeamServlet</servlet-class>
 <init-param>

 <param-name>teamColor</param-name>

 <param-value>blue</param-value>
 </init-param>

 <init-param>

been /seedlist*, the list servlet would be

invoked.

http://host:port/mywebapp/seeds garden

http://host:port/mywebapp/seeds/index.html garden

http://host:port/mywebapp/index.abc kiwi

 <param-name>bgColor</param-name>
 <param-value>#0000CC</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>redteam</servlet-name>
 <url-pattern>/red/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>blueteam</servlet-name>

 <url-pattern>/blue/*</url-pattern>
 </servlet-mapping>

</web-app>

Sample code for Servlet :

HelloWorldServlet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloWorldServlet extends HttpServlet

{

public void service(HttpServletRequest req,
 HttpServletResponse res)

 throws IOException

 {
 // Must set the content type first

 res.setContentType("text/html");

 // Now obtain a PrintWriter to insert HTML into

 PrintWriter out = res.getWriter();

 out.println("<html><head><title>" +
 "Hello World!</title></head>");

 out.println("<body><h1>Hello World!</h1></body></html>");

 }

}

Link for creating servlets in Netbeans using Glassfish server :

https://www.geeksforgeeks.org/servlet-web-application/

What is a Web Application?

A Web application is sometimes called a Web app, Thus, it is an application that

is accessed using a Web browser over the network such as the Internet or an

Intranet. While many of the Web applications are written directly in PHP or Perl,

Java remains a commonly used programming language for writing Web

applications. This is especially true for Web-based enterprise applications as

usually referred to as enterprise Web applications. Java EE provides several

useful components such as JSP, JSF, Servlets, client-side applets, Enterprise

JavaBeans, JDBC, and several other Web service technologies for writing

enterprise Web applications. This chapter focuses on the writing Servlets as the

Web application of choices.

Basically, a Web application is defined as a hierarchy of directories and files

within a standard layout. There are two ways by which such a hierarchy can be

accessed:

 The first is where each directory and file exist in the file system separately.

This is termed as the application in its unpacked form and used during the

application development

 The second is where all the subdirectories are zipped together in a packed

form known as a Web ARchive or WAR file. It is used when distributing the

applications to be installed

https://www.geeksforgeeks.org/servlet-web-application/

Organization Root Of A Web Application

Before beginning to work with the Servlets, it is useful to examine the runtime

organizations of Web applications. Before the Servlet API Specification and

version 2.2, across the servers, there was little consistency in the WAR file

structure. However, Web servers that conform to the Servlet API version 2.2 [or

later] the Web application ARchive must be in a standard format before it is

accepted. These are discussed below.

Web Resources

In the Java EE architecture, Web components and static Web content files such as

images are called Web resources. A web module is the smallest deployable and

usable unit of Web resources. A Java EE Web module corresponds to the Web

application as defined in the Java Servlet specification, And The top-level

directory of A Web application hierarchy is also a document root of the

application. Here, all the HTML files and JSP pages can be placed that comprise

the application’s user interface.

WEB-INF: The Document root contains a subdirectory named /WEB-INF/. This

subdirectory holds the following files and directories:

 web.xml: Is the Web application deployment descriptor file

 Classes: Is a directory that holds server side classes such as Servlets, utility

classes JavaBeans components and so on

Deployment Descriptor

Servlet API version 3.0 onwards, the deployment descriptor of [web.xml] takes

precedence over the annotations. This deployment descriptor overrides

configuration information specified through the annotation mechanism. Version

3.0 of the web deployment descriptor contains a new attribute called metadata

complete on the <web-app> element, which defines whether the web descriptor is

complete or whether the class files of the web application should be examined for

its annotations that specify the deployment information, and if this attribute is set

to true, the deployment tool must be ignoring any servlet annotations are present

in the class files and it is used only the configuration details mentioned in the

descriptor. Otherwise, if the value is not specified or set to be false, the container

must scan all classes files of the application for annotations. This will provide a

way to enable or disable the scanning of the annotation and its processing during

the startup of the application.

Context Path

When the application is being deployed on the particular Web server, Then a

context path to the application has been assigned within it. Thus it means if the

application is assigned to the context path as a bookshop, then a request of URI

referring to /bookshop/index.html will retrieve the index.html file from that

document root.

Servlet environment objects :

Servletconfigure

Se

• A servlet is a Java program that runs in a Web server, as opposed to an

applet that runs in a client browser. Typically, the servlet takes an HTTP

request from a browser, generates dynamic content (such as by querying a

database), and provides an HTTP response back to the browser.

	Working With Servlets
	Why Servlet?
	Applications of Servlet :
	What is a Web Application?
	Organization Root Of A Web Application
	Web Resources
	Deployment Descriptor

